Shift-Invariant and Sampling Spaces Associated with the Special Affine Fourier Transform

نویسندگان

  • Ayush Bhandari
  • Ahmed I. Zayed
چکیده

The Special Affine Fourier Transformation or the SAFT generalizes a number of well known unitary transformations as well as signal processing and optics related mathematical operations. Shift-invariant spaces also play an important role in sampling theory, multiresolution analysis, and many other areas of signal and image processing. Shannon’s sampling theorem, which is at the heart of modern digital communications, is a special case of sampling in shift-invariant spaces. Furthermore, it is well known that the Poisson summation formula is equivalent to the sampling theorem and that the Zak transform is closely connected to the sampling theorem and the Poisson summation formula. These results have been known to hold in the Fourier transform domain for decades and were recently shown to hold in the Fractional Fourier transform domain by A. Bhandari and A. Zayed. The main goal of this article is to show that these results also hold true in the SAFT domain. We provide a short, self–contained proof of Shannon’s theorem for functions bandlimited in the SAFT domain and then show that sampling in the SAFT domain is equivalent to orthogonal projection of functions onto a subspace of bandlimited basis associated with the SAFT domain. This interpretation of sampling leads to least–squares optimal sampling theorem. Furthermore, we show that this approximation procedure is linked with convolution and semi–discrete convolution operators that are associated with the SAFT domain. We conclude the article with an application of fractional delay filtering of SAFT bandlimited functions. CONTENTS

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A sampling theorem on shift-invariant spaces associated with the fractional Fourier transform domain

As a generalization of the Fourier transform, the fractional Fourier transform was introduced and has been further investigated both in theory and in applications of signal processing. We obtain a sampling theorem on shift-invariant spaces associated with the fractional Fourier transform domain. The resulting sampling theorem extends not only the classical Whittaker-Shannon-Kotelnikov sampling ...

متن کامل

Multi-Channel Sampling on Shift-Invariant Spaces with Frame Generators

Let φ be a continuous function in L(R) such that the sequence {φ(t− n)}n∈Z is a frame sequence in L(R) and assume that the shift-invariant space V (φ) generated by φ has a multi-banded spectrum σ(V ). The main aim in this paper is to derive a multi-channel sampling theory for the shift-invariant space V (φ). By using a type of Fourier duality between the spaces V (φ) and L[0, 2π] we find necess...

متن کامل

Introduction to Shift-Invariant Spaces I: Linear Independence

Shift-invariant spaces play an increasingly important role in various areas of mathematical analysis and its applications. They appear either implicitly or explicitly in studies of wavelets, splines, radial basis function approximation, regular sampling, Gabor systems, uniform subdivision schemes, and perhaps in some other areas. One must keep in mind, however, that the shift-invariant system e...

متن کامل

O ct 2 01 7 SAMPLING THEOREMS FOR SHIFT - INVARIANT SPACES , GABOR FRAMES , AND TOTALLY POSITIVE FUNCTIONS

We study nonuniform sampling in shift-invariant spaces and the construction of Gabor frames with respect to the class of totally positive functions whose Fourier transform factors as ĝ(ξ) = ∏n j=1(1 + 2πiδjξ) −1 e 2 for δ1, . . . , δn ∈ R, c > 0 (in which case g is called totally positive of Gaussian type). In analogy to Beurling’s sampling theorem for the Paley-Wiener space of entire functions...

متن کامل

Sampling Theorems for Shift-invariant Spaces, Gabor Frames, and Totally Positive Functions

We study nonuniform sampling in shift-invariant spaces and the construction of Gabor frames with respect to the class of totally positive functions whose Fourier transform factors as ĝ(ξ) = ∏n j=1(1 + 2πiδjξ) −1 e 2 for δ1, . . . , δn ∈ R, c > 0 (in which case g is called totally positive of Gaussian type). In analogy to Beurling’s sampling theorem for the Paley-Wiener space of entire functions...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1601.05793  شماره 

صفحات  -

تاریخ انتشار 2016